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The effect of inhomogeneities in an explosive on the critical detonation diameter is theoretically analyzed.
On the assumption that the inhomogeneities are centers of the reaction behind the detonation front, a for-
mula ig obtained for determining the critical diameter as a function of the concentration and size of the
inhomogeneities. It is shown that when the inhomogeneities are particles of an inert substance added to the
explosive, the dependence of the critical diameter on the mass fraction and size of the inert particles may
have a minimum. The results of the theoretical analysis are in qualitative agreement with the experimental
data.

Inhomogeneities in an explosive charge may have an important influence on the detonation properties. Thus, as
an example, in [1] it was found that introducing inorganic additives (CaCOy, PlO, W, etc.) into an explosive markedly
(in some cases by a factor of almost 2) reduces the critical diameter d«. To explain this effect the authors of [1] pro-
posed the following mechanism of the chemical reaction in a detonation wave propagating along an explosive charge
with inert additives. (A substance is considered inert if the heat release resulting from its reaction with the explosive
or decompostion takes place behind the Chapman-Jouguet plane.) In the detonation wave (Fig. 1) the chemical reaction
is initiated at individual centers or "hot spots" b that develop behind the detonation front a as a result of the interaction
of the shock-compressed explosive and the particles of inert substance. Then the reaction is propagated to the adjacent
layers of explosive f and ends in the Chapman-~Jouguet plane g.

Accordingly, the combustion time 7, is composed of two parts: an induction period 7; (the time required for the
reaction to develop at the ignition center) and the time required for propagationof the reaction from the ignition centers
up to the final completion of combustion 7y:

Te= Ty + Tr (1)

The addition of inert particles may substantially reduce the reaction time 7,; accordingly, the critical diameter
of an explosive containing inert particles may be less than the critical diameter of the pure explosive, since dx ~ T,.

Interesting results relating to the dependence of the critical diameter of a liquid explosive (nitromethane) on the
content of powdered AL, O3, Al, W, and carbon black were recently obtained by Kurbangalina [2]. It was found that as
the mass fraction of inert powder increases, the critical diameter of a nitromethane-Al,O; mixture at first decreases
{by several times) and then increases. Moreover, the critical diameter of the mixture also depends on the particle
size of the inert powder. At a fixed value of the mass fraction of inert substance there is a particle size at which the
critical diameter has a minimum. Kurbangalina attributes this dependence of the critical diameter on the mass fraction
and particle size of the inert powder to the important influence of the ignition centers resulting from the interaction of
the shock-compressed explosive and the inert particles on the detonation reaction time.

Quantitative estimates of this effect can be obtained on the basis of the detonation model for an explosive charge
with inhomogeneities proposed in [1] (Fig. 1).

Fig. 1
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Thus, we assume that the chemical reaction behind the detonation front is initiated at individual centers—hot
spots—resulting from interaction of the shock-compressed explosive and the inert particles, which may take place
owing to differences in the physical properties (such as density, hardness, etc.) of the inert substance and the explo-
sive. The critical diameter dx can be estimated as follows* [3]:

d, ~ D1, (2)

Here, D is the detonation velocity, T, = 7j + T Is the total reaction (combustion) time (1).

If it is assumed that the particle velocities of the inert substance and the explosive are the same at the instant
of completion of the chemical reaction, the Chapman-Jouguet detonation velocity is approximately equal to

D=DyVi—a (3)
Here, D, is the detonation velocity of the pure explosive, and « is the mass fraction of inert substance.

Let us now calculate the combustion time 7, (1). We first estimate the induction period 7;. If we neglect burnup
during the time 7; and hot-spot formation time, the approximate expression for r; near the ignition limit has the fol-
lowing form [4]

T VEnn, (et /1, — 1) (4)
cppRT? E 2epary?
Y= "QZE P ET  Te=T3

Here, 7, is the adiabatic induction period; 74 is the characteristic heat transfer time; Cp is specific heat; p is
density; Q is the reaction energy; Z is the pre-exponential factor; R is the gas constant; E is the activation energy; T
and r, are the temperature and size, respectively, of the hot spot; and A is the thermal conductivity.

Near the ignition limit 7 /Ta ~ 1/e; therefore, by multiplying the numerator and the denominator of the fraction
in Eq. (4) by ¥2, we obtain correct to a coefficient of order unity

T T (1 — g e H (5)

Clearly, relation (5) gives the qualitatively correct dependence of 7; on Ta/'rq not only as the ignition limit is
approached, when Ta/’Tq — e and T7; — *, but also remote from the limit, when 7, /‘Tq — 0; in this case 1y — 7,.

Therefore relation (5) will be perfectly applicable for estimating the induction period 7; on the entire interval
(0, e) of variation of Ta/Tq.

The temperature of the hot spot depends both on the detonation velocity and on the physicomechanical properties
of the inert substance and the explosive and, clearly, in the first approximation can be determined as follows:

50 SD(l—q)
e X

T =

The quantity & depends chiefly on the physicomechanical properties of the inert substance and the explosive.

Using expressions (4)—(6), we can reduce the expression for 7; to the following form:

F 0 o ER 7
rlzﬁ—expm@——?expm) (7)
Ec, eppRTD ® ( IRT2, 12
b="mpr: F="qzE > =\3E0z¢ )

The reaction propagation time 7, depends on the distance between hot spots L and the normal burning velocity u.
The dependence of u on temperature and pressure usually has a power-law character; therefore in the first approxima-
tion for the shock-compressed explosive we may assume that u ~ D. We estimate 7, as follows:

*According to Khariton [3] ds & To¢, where c is the propagation velocity of the unloading waves in the shock~
compressed explosive. In order of magnitude, c ~ (Ap/Ap)l/ 2, where Ap and Ap are the changes in pressure and density
in the unloading wave front. For explosives Ap = const and Ap~ D?, and therefore ¢ ~ D and dx ~ ToD.
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. =L/u=xpL/D (L=N» N=n+n (8)
Here, N is the hot spot concentration; n; is the concentration of ignition centers resulting from detonation insta-

bility; and n is the concentration of inert particles, which we express in terms of their mass fraction:

n— APo
T 4fanr®p [1 —a (1 —pe/p)]

Here, p,is the density of the explosive; p is the density of the inert substance; and r is the radius of the inert
particle. Substituting the expression for L and N into relation (8), we obtain

Trz—g‘("o-i— ny " (9)

Using relations (1), (2), (7), and (9), for the critical diameter d« we obtain

d.=3{5 eXP%(_i"%eXP 13?01-)_1/2":‘(,10_‘_1”)‘/,} (E=%> a0

In Eq. (10) the coefficients 8 and ¢ depend chiefly on the properties of the inert substance and the explosive, and
in the first approximation their variation can be neglected. Coefficients ¢ and ¢ also depend on the detonation velocity,
but this dependence can be neglected as compared with the exponential dependence, and therefore { and & may be as-
sumed constant.

Let us now analyze, with these assumptions, the expressions for the critical diameter dx (10). First of all, we
note the case in which n; — < and rx — «. This condition implies that ignition occurs not at individual points, but at all
points of the surface at once, i.e., the classical detonation mechanism. In this case the formula for the critical diam-
eter has the same classical form [3]:

4 ~owp T

and dy increases with increase in the mass fraction of inert substance (curve 1 in Fig. 2).

More interesting, however, is the case in which the addition of inert particles has an important influence on the
properties of the detonation; then the critical diameter depends chiefly on the mass fragtion and radius of the inert
particles. In this case ny < n and r« ~r, and formula (10) assumes the following form:

eafronr s (1= D oy 2 L
d*,._,Bliexpl__a 1—— expm) +n'/‘ (11)

Before turning to an analysis of expression {11), we note that the first term on the right-hand side of (11) is pro-~
portional to the combustion propagation time 7{, while the second is proportional to the combustion propagation time
7r. Clearly, the dependence of each of these terms on the mags fraction « and radius r of the inert particles is differ-
ent in character and therefore the dependence of the critical diameter dx on « and r may have a minimum. In fact, if
the hot-spot temperature is sufficiently high, at small values of &, 7j < 7., and the critical diameter is determined by
the inert particle concentration:

1
dy~Tp~a /2

However, as « increases, the detonation velocity decreases; therefore the induction period 7; increases, and at a
sufficiently large « the opposite inequality ;> 7y will be satisfied; in this case

0 v Ly 29 N\~
dk~ri~exp1—_aki—7—exp L.a) s

and d, increases with increase in .
The graph of the dependence of dx on « illustrating this case is shown in Fig. 2 (curve 2).

Let us now consider the nature of the dependence of dx on r (Fig. 3) at a fixed value of «.
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If the particle size and hence the size of the hot spots is so small that the ignition condition is not satisfied, i.e.,
'ra/'rq > e, and therefore the inert particles do not participate in the initiation of the chemical reaction, the critical
diameter does not depend on the particle size.
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Fig. 2
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However, if the particle size is sufficiently large and the ignition condition is satisfied 'ra/'rq < e, then at 73 » 7,
(near the ignition limit) the critical diameter decreases as the particle radius increases:

[u] 20
d*~'vi~<1—~lj;exp—1_a) *

With further increase in the particle size an important role begins to be played by the combustion propagation
time 7y; therefore the critical diameter increases with increase in r:

d‘ ~Tp~T
Finally, when the particle size becomes so large that the condition
ng>>n

is satisfied, the critical diameter again becomes independent of r.
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Thus, it has been shown that the dependence of the critical detonation diameter of a mixture of an explosive and
particles of an inert substance on the mass fraction and size of the particles may have a minimum.

In conclusion the author thanks R. Kh. Kurbangalina for formulating and discussing the problem and L. N, Stesik
for his useful remarks.
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